Health & Environmental Research Online (HERO)


Print Feedback Export to File
4697682 
Journal Article 
Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: Multiple groups for broad-spectrum adsorption 
Yang, S; Hua, M; Shen, L; Han, X; Xu, M; Kuang, L; Hua, D 
2018 
Yes 
Journal of Hazardous Materials
ISSN: 0304-3894
EISSN: 1873-3336 
354 
191-197 
English 
It is significant to develop novel materials and techniques for efficient removal of radionuclides from radioactive wastes due to the radioactive and chemical toxicity. In this paper, we report a strategy for broad-spectrum adsorption of radionuclides by multiple groups-decorated adsorbents. Specifically, the adsorbents were prepared by grafting diethyl-(4-vinylbenzyl) phosphonate and maleic anhydride copolymers onto molybdenum disulfide sheets for the sorption of uranium(VI) and europium(III). The sorption efficiencies exhibited a dependency on pH, contact time and initial concentrations. The sorption reached the equilibrium within 60 min and followed a pseudo-second-order kinetic model. The maximum sorption capacities of the sorbents were 448.4 mg/g and 171.2 mg/g at pH 4.0 and 298.15 K for uranium(VI) and europium(III), respectively. The sorbent possessed a high efficiency of 98% in five sorption-desorption cycles without damage in chemical structures. XPS spectra showed that the sorption of uranium(VI) and europium(III) on the sorbents were originated from the interaction between multiple groups (such as sulfur, COOH, PO and PO) and uranium/europium. This work demonstrates that the adsorbent can be utilized as a promising material for the separation of broad-spectrum radionuclides from an aqueous solution. 
IRIS
• Molybdenum
     Litsearch 2018
          Pubmed
          WOS
• Uranium
     Uranium Literature Search Update 7/2018
          WOS
     Uranium Literature Search Update 4/2020
          WOS
• Uranium Toxicological Review
     Date limited literature search 2011-2021
          WOS
          Scopus
          New to this search