Health & Environmental Research Online (HERO)


Print Feedback Export to File
5037530 
Journal Article 
Estimation of vanadium water quality benchmarks for the protection of aquatic life with relevance to the Athabasca Oil Sands region using species sensitivity distributions 
Schiffer, S; Liber, K 
2017 
Yes 
Environmental Toxicology and Chemistry
ISSN: 0730-7268
EISSN: 1552-8618 
WILEY 
HOBOKEN 
36 
11 
3034-3044 
English 
Elevated vanadium (V) concentrations in oil sands coke, which is produced and stored on site of some major Athabasca Oil Sands companies, could pose a risk to aquatic ecosystems in northern Alberta, Canada, depending on its future storage and utilization. In the present study, V toxicity was determined in reconstituted Athabasca River water to various freshwater organisms, including 2 midge species (Chironomus dilutus and Chironomus riparius; 4-d and 30-d to 40-d exposures) and 2 freshwater fish species (Oncorhynchus mykiss and Pimephales promelas; 4-d and 28-d exposures) to facilitate estimation of water quality benchmarks. The acute toxicity of V was 52.0 and 63.2 mg/L for C. dilutus and C. riparius, respectively, and 4.0 and 14.8 mg V/L for P. promelas and O. mykiss, respectively. Vanadium exposure significantly impaired adult emergence of C. dilutus and C. riparius at concentrations ≥16.7 (31.6% reduction) and 8.3 (18.0% reduction) mg/L, respectively. Chronic toxicity in fish presented as lethality, with chronic 28-d LC50s of 0.5 and 4.3 mg/L for P. promelas and O. mykiss, respectively. These data were combined with data from the peer-reviewed literature, and separate acute and chronic species sensitivity distributions (SSDs) were constructed. The acute and chronic hazardous concentrations endangering only 5% of species (HC5) were estimated as 0.64 and 0.05 mg V/L, respectively. These new data for V toxicity to aquatic organisms ensure that there are now adequate data available for regulatory agencies to develop appropriate water quality guidelines for use in the Athabasca Oil Sands region and elsewhere. Until then, the HC5 values presented in the present study could serve as interim benchmarks for the protection of aquatic life from exposure to hazardous levels of V in local aquatic environments. Environ Toxicol Chem 2017;36:3034-3044. © 2017 SETAC. 
IRIS
• Vanadium Compounds - Problem Formulation
     Literature Search: Jan 2010 - Mar 2019
          PubMed
          WoS
     Combined data set
          Dataset for title/abstract screening
               Excluded- PECO criteria not met (TIAB)
• Vanadium Inhalation
     Literature Search: Jan 2010 – Mar 2019
          PubMed
          WoS
     Combined Dataset
          Dataset for title/abstract screening
               Excluded- PECO criteria not met (TIAB)