Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
5051957
Reference Type
Journal Article
Title
CO2 Footprint and Life-Cycle Costs of Electrochemical Energy Storage for Stationary Grid Applications
Author(s)
Baumann, M; Peters, JF; Weil, M; Grunwald, A
Year
2017
Volume
5
Issue
7
Page Numbers
1071-1083
DOI
10.1002/ente.201600622
Web of Science Id
WOS:000405294000009
Abstract
Batteries are considered as one of the key flexibility options for future energy storage systems. However, their production is cost- and greenhouse-gas intensive and efforts are made to decrease their price and carbon footprint. We combine life-cycle assessment, Monte-Carlo simulation, and size optimization to determine life-cycle costs and carbon emissions of different battery technologies in stationary applications, which are then compared by calculating a single score. Cycle life is determined as a key factor for cost and CO2 emissions. This is not only due to the required battery replacements but also due to oversizing needed for battery types with low cycle lives to reduce degradation effects. Most Li-ion but also the NaNiCl batteries show a good performance in all assessed applications whereas lead-acid batteries fall behind due to low cycle life and low internal efficiency. For redox-flow batteries, a high dependence on the desired application field is pointed out.
Keywords
carbon footprint; energy storage; life-cycle assessment; lithium-ion; stationary battery
Tags
IRIS
•
Vanadium Compounds - Problem Formulation
Literature Search: Jan 2010 - Mar 2019
WoS
Combined data set
Excluded by SWIFT Review screen
•
Vanadium Inhalation
Literature Search: Jan 2010 – Mar 2019
WoS
Combined Dataset
Excluded by SWIFT Review screen
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity