Health & Environmental Research Online (HERO)


Print Feedback Export to File
6320960 
Journal Article 
On the ability of perfluorohexane sulfonate (PFHxs) bioaccumulation by two pseudomonas sp. strains isolated from PFAS-contaminated environmental matrices 
Presentato, A; Lampis, S; Vantini, A; Manea, F; Daprà, F; Zuccoli, S; Vallini, G 
2020 
Microorganisms
ISSN: 2076-2607 
92 
English 
PFASs (perfluoroalkyl and polyfluoroalkyl substances) are highly fluorinated, aliphatic, synthetic compounds with high thermal and chemical stability as well as unique amphiphilic properties which make them ingredients in a range of industrial processes. PFASs have attracted consideration due to their persistence, toxicity and bioaccumulation tendency in the environment. Recently, attention has begun to be addressed to shorter-chain PFASs, such as perfluorohexane sulfonate [PFHxS], apparently less toxic to and more easily eliminated from lab animals. However, short-chain PFASs represent end-products from the transformation of fluorotelomers whose biotic breakdown reactions have not been identified to date. This means that such emergent pollutants will tend to accumulate and persist in ecosystems. Since we are just learning about the interaction between short-chain PFASs and microorganisms, this study reports on the response to PFHxS of two Pseudomonas sp. strains isolated from environmental matrices contaminated by PFASs. The PFHxS bioaccumulation potential of these strains was unveiled by exploiting different physiological conditions as either axenic or mixed cultures under alkanothrofic settings. Moreover, electron microscopy revealed nonorthodox features of the bacterial cells, as a consequence of the stress caused by both organic solvents and PFHxS in the culturing substrate. 
bioaccumulation; bioremediation; emergent pollutants; PFASs; PFHxS; Pseudomonas sp; short-chain PFASs; xenobiotics 
PFAS
• Additional PFAS (formerly XAgency)
• PFAS 150
     Literature Search Update December 2020
          PubMed
     Literature Search August 2019
          PubMed
     Perfluorohexanesulfonic acid
• PFHxS
     Database searches
          Pubmed
          WOS
          Scopus
     Supplemental
          TiAb
          Ecotoxicity studies
     Literature Search Update April 2023
          Supplemental
               Ecotoxicity studies