Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
749899
Reference Type
Journal Article
Title
WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk
Author(s)
Holland, GP; Lewis, RV; Yarger, JL
Year
2004
Is Peer Reviewed?
Yes
Journal
Journal of the American Chemical Society
ISSN:
0002-7863
EISSN:
1520-5126
Volume
126
Issue
18
Page Numbers
5867-5872
Language
English
PMID
15125679
DOI
10.1021/ja031930w
Abstract
The addition of water to spider dragline silk results in fiber contraction to 50% its initial length and significant changes to the mechanical properties of the silk. This event has been termed supercontraction. A decrease in strength and increase in elasticity have been reported when the silk is in contact with water. Two-dimensional wide-line separation (WISE) nuclear magnetic resonance (NMR) is implemented to correlate (13)C chemical shifts with mobility by observing the corresponding (1)H line widths and line shapes in water-saturated spider dragline silk. The WISE NMR spectrum of the native silk exhibits (1)H line widths that are approximately 40 kHz for all carbon environments characteristic of a rigid organic system. In contrast, the water-saturated case displays a component of the (1)H line that is narrowed to approximately 5 kHz for the glycine C(alpha) and a newly resolved alanine helical environment while the alanine C(beta) corresponding to the beta-sheet conformation remains broad. These results indicate that water permeates the amorphous, glycine-rich matrix and not the crystalline, polyalanine beta-sheets. A delay time is added to the WISE NMR pulse sequence to monitor spin diffusion between the amorphous, mobile region and the crystalline domains. The time required for spin diffusion to reach spatial equilibrium is related to the length scale of the polyalanine crystallites. This technique is employed to measure crystalline domain sizes on the nanometer length scale in water-solvated spider dragline silk. These results provide further insight into the structure of spider silk and mechanism of supercontraction.
Tag
Other
•
Nanoscale Carbon
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity