Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
751802
Reference Type
Journal Article
Title
Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants
Author(s)
Choi, MH; Xu, J; Gutierrez, M; Yoo, T; Cho, YH; Yoon, SC
Year
2011
Is Peer Reviewed?
Yes
Journal
Journal of Biotechnology
ISSN:
0168-1656
EISSN:
1873-4863
Volume
151
Issue
1
Page Numbers
30-42
Language
English
PMID
21029757
DOI
10.1016/j.jbiotec.2010.10.072
Abstract
Polyhydroxyalkanoic acids (PHAs) and rhamnolipids considered as biotechnologically important compounds are simultaneously produced by Pseudomonas aeruginosa. Both are synthesized from common precursors, (R)-3-hydroxyfatty acids. To find the probable metabolic relationship between their syntheses, we investigated the PHA and rhamnolipids production in four pha (phaC1, phaC2, phaZ, and phaG), four rhl (rhlA, rhlB, rhlR, and rhlI) and rpoS mutant strains of P. aeruginosa PA14 and PAO1 grown in minimal medium containing 70 mM fructose or 30 mM decanoic acid. Higher PHA accumulation was found in the rhamnolipid-negative mutants than in the wild-type strains, suggesting that 3-hydroxyfatty acid precursors become more available for PHA synthesis when rhamnolipids synthesis is absent. However, compared to the wild-type strains, rhamnolipids production was not enhanced in the four pha mutants of P. aeruginosa PA14 and PAO1 which indicates that rhamnolipids production in P. aeruginosa could be tightly regulated at the transcriptional level by a quorum-sensing response. The metabolic pathways for PHA and rhamnolipid synthesis from medium-chain-length fatty acids were also investigated using octanoic-1-¹³C acid. ¹³C NMR analysis revealed that the monomer-unit (R)-3-hydroxyoctanoate-1-¹³C being converted from the octanoic acid substrate was effectively incorporated into PHA. In the rhamnolipid synthesis, the (R)-3-hydroxyoctanoate-1-¹³C is suggested to be firstly converted to (R)-3-hydroxydecanoate-1,3-¹³C via fatty acid de novo biosynthesis pathway and then further processed into (R)-3-((R)-3-hydroxyalkanoyloxy)alkanoic acids (HAAs) via RhlA. The ratio of mono- to dirhamnolipids in the product depended on the type of carbon sources. The rhlB mutant could be exploited as an efficient producer of the important biosurfactant HAAs (e.g., ~700 mg/L HAAs was obtained when grown on 60 mM octanoic acid).
Tag
Other
•
Nanoscale Carbon
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity