Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
752134
Reference Type
Journal Article
Title
ADME Evaluation in Drug Discovery. 9. Prediction of Oral Bioavailability in Humans Based on Molecular Properties and Structural Fingerprints
Author(s)
Tian, S; Li, Y; Wang, J; Zhang, J; Hou, T
Year
2011
Is Peer Reviewed?
1
Journal
Molecular Pharmaceutics
ISSN:
1543-8384
EISSN:
1543-8392
Volume
8
Issue
3
Page Numbers
841-851
Language
English
PMID
21548635
DOI
10.1021/mp100444g
Abstract
Oral bioavailability is an essential parameter in drug screening cascades and a good indicator of the capability of the delivery of a given compound to the systemic circulation by oral administration. In the present work, we report a database of oral bioavailability of 1014 molecules determined in humans. A systematic examination of the relationships between various physicochemical properties and oral bioavailability were carried out to investigate the influence of these properties on oral bioavailability. A number of property-based rules for bioavailability classification were generated and evaluated. We found that no rule was an effective predictor for oral bioavailability because these simple rules cannot characterize the influence of important metabolic processes on bioavailability. Finally, the genetic function approximation (GFA) technique was employed to construct the multiple linear regression models for oral bioavailability using structural fingerprints as the basic parameters, together with several important molecular properties. The best model is able to predict human oral bioavailability with an r of 0.79, a q of 0.72, and a RMSE (root-mean-square error) of 22.30% of the compounds from the training set. The analysis of the descriptors chosen by GFA shows that the important structural fingerprints are primarily related to important intestinal absorption and well-known metabolic processes. The predictive power of the models was further evaluated using a separate test set of 80 compounds, and the consensus model can predict the oral bioavailability with r(test) = 0.71 and RMSE = 23.55% for the tested compounds. Since the necessary molecular properties and structural fingerprints can be calculated easily and quickly, the models we proposed here may help speed up the process of finding or designing compounds with improved oral bioavailability.
Tag
Other
•
Nanoscale Carbon
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity