Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
87371
Reference Type
Journal Article
Title
Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles
Author(s)
Harder, V; Gilmour, P; Lentner, B; Karg, E; Takenaka, S; Ziesenis, A; Stampfl, A; Kodavanti, U; Heyder, J; Schulz, H
Year
2005
Is Peer Reviewed?
Yes
Journal
Inhalation Toxicology
ISSN:
0895-8378
EISSN:
1091-7691
Volume
17
Issue
1
Page Numbers
29-42
PMID
15764481
DOI
10.1080/08958370590885681
Web of Science Id
WOS:000225580700003
Abstract
Based on epidemiologic observations, the issue of adverse health effects of inhaled ultrafine particles (UFP) is currently under intensive discussion. We therefore examined cardiovascular effects of UFP in a controlled animal exposure on young, healthy WKY rats. Short-term exposure (24 h) to carbon UFPs (38 nm, 180 Ág m -3), generated by spark discharging, induced a mild but consistent increase in heart rate (18 bpm, 4.8%), which was associated with a significant decrease in heart-rate variability during particle inhalation. The timing and the transient character of these responses point to a particle induced alteration of cardiac autonomic balance, mediated by a pulmonary receptor activation. After 24 h of inhalation exposure, bronchoalveolar lavage revealed significant but low-grade pulmonary inflammation (clean air 1.9% vs. UFPs 6.9% polymorphonuclear cells) and on histopathology sporadic accumulation of particle-laden macrophages was found in the alveolar region. There was no evidence of an inflammation-mediated increase in blood coagulability, as UFP inhalation did not induce any significant changes in plasma fibrinogen or factor VIIa levels and there were no prothrombotic changes in the lung or the heart at both the protein and mRNA level. Histological analysis revealed no signs of cardiac inflammation or cardiomyopathy. This study therefore provides toxicological evidence for UFP-associated pulmonary and cardiac effects in healthy rats. Our findings suggest that the observed changes are mediated by an altered sympatho-vagal balance in response to UFP inhalation, but do not support the concept of an inflammation-mediated prothrombotic state by UFP.
Tags
•
ISA-PM (2009 Final Project Page)
2009 Final
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity