Health & Environmental Research Online (HERO)


Print Feedback Export to File
1071454 
Journal Article 
Reactions of hydroxyl radicals with alkenes in low-temperature matrices 
Feltham, EJ; Almond, MJ; Marston, G; Wiltshire, KS; Goldberg, N 
2000 
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
ISSN: 1386-1425
EISSN: 1873-3557 
56 
13 
2589-2603 
English 
The reactions of hydroxyl radicals with a number of stable alkenes have been studied in low-temperature matrices. The reactions were initiated by broad band UV-visible irradiation of matrices containing H2O2, and the alkene under investigation. The hydroxyalkyl radical products were identified principally by comparison of their spectra with the spectra of corresponding stable alcohols. Accordingly, IR spectra were recorded for the following series of alcohols isolated in argon matrices--methanol, ethanol, ethanol-d6, propan-1-ol, propan-2-ol, butan-2-ol, 2-methylpropan-1-ol (iso-butyl alcohol), 2-methylpropan-2-ol (tert-butyl alcohol), 2-methylbutan-2-ol (tert-amyl alcohol), 3-methylbutan-2-ol and 2,3-dimethylbutan-2-ol. The hydroxyalkyl radicals, which appear to be formed from the alkenes studied were as follows--from ethene, 2-hydroxyethyl radical: from cis- or trans-but-2-ene. 1-methyl-2-hydroxypropyl radical; from propene, 1-methyl-2-hydroxyethyl and 2-hydroxypropyl radicals; from but-1-ene. 1-hydroxymethylpropyl and 2-hydroxybutyl radicals; from 2-methylpropene (iso-butene), 1,1-dimethyl-2-hydroxyethyl and 2-methyl-2-hydroxypropyl radicals; the radical products from buta-1,3-diene and isoprene could not be identified. In the cases, where two radical products were possible, i.e. when propene, but-1-ene or 2-methylpropene were the substrates, it was found that the concentration of the secondary or tertiary radical always exceeded that of the primary radical. However, the relative concentration of these radicals appears to be determined by subsequent photolysis to give carbonyl compounds. There seems, therefore, to be little preference for the secondary and tertiary radicals over the primary radicals in the primary addition process. Comments on the mechanism of the transformation from radical to carbonyl compound based upon identification of intermediates within the matrix and isotopic substitution experiments are made. The characterisation of the 2-hydroxyethyl radical has been backed up by experiments utilising isotopic substitution with 13C and D (2H). The other radicals have been identified with varying degrees of certainty. Those radicals, which are observed at the highest concentration and which are, therefore, characterised more certainly are--2-hydroxyethyl (1), from ethene: 1-methyl-2-hydroxypropyl (2), from cis- and trans-but-2-ene; 1-methyl-2-hydroxyethyl (3), from propene; 1-hydroxymethylpropyl (5), from but-1-ene; and 1,1- dimethyl-2-hydroxyethyl (8), from 2-methylpropene. 
matrix-isolation; atmospheric chemistry; hydroxyl radical; alkenes; infrared spectroscopy 
IRIS
• tert-Butanol
     Considered Studies
          Electronic Search
     Excluded/ Not on Topic
          Method of detection/Exposure and biological monitoring
• Methanol (Non-Cancer)
     Search 2012
          WOS