Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1114542
Reference Type
Journal Article
Title
Composite sorbent of methanol "LiCl in mesoporous silica gel" for adsorption cooling: Dynamic optimization
Author(s)
Gordeeva, LG; Aristov, YI
Year
2011
Is Peer Reviewed?
Yes
Journal
Energy
ISSN:
0360-5442
Publisher
Elsevier BV
Volume
36
Issue
2
Page Numbers
1273-1279
Abstract
A novel composite sorbent of methanol "LiCl in mesoporous silica gel" has recently been proposed for AC (adsorption cooling). Its testing in a lab-scale adsorption chiller resulted in the specific cooling power of 210-290 W/kg and the cooling COP of 0.32-0.4. Although these values are rather encouraging, a room for their enhancement still exists. The aim of this paper was a dynamic optimization of the composite performance in AC cycles. Dynamics of methanol sorption on loose grains of the LiCl/silica composites was studied by a Large Temperature Jump method under typical conditions of AC cycle. Effects of number of the sorbent layers, salt content, grain size and cycle boundary temperatures were studied. Physico-chemical processes in the three-phase system (salt, solution, vapor) were shown to be quite complex and can strongly affect the dynamics of methanol ad-/desorption. Several obstacles which can retard the sorption were analyzed. Appropriate recommendations on improving the cycle dynamics, which concern optimal conversion degree, salt content and relative durations of ad- and desorption phases, were made.
Keywords
Adsorption cooling; LiCl/silica composite; Methanol; Adsorption dynamics
Tags
IRIS
•
Methanol (Non-Cancer)
Search 2012
WOS
ProQuest
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity