Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1125980
Reference Type
Journal Article
Title
Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium)
Author(s)
Hagedorn, M; Carter, VL; Leong, JC; Kleinhans, FW
Year
2010
Is Peer Reviewed?
Yes
Journal
Cryobiology
ISSN:
0011-2240
EISSN:
1090-2392
Volume
60
Issue
2
Page Numbers
147-158
Language
English
PMID
19857482
DOI
10.1016/j.cryobiol.2009.10.005
Web of Science Id
WOS:000275687100006
Abstract
Coral throughout the world are under threat. To save coral via cryopreservation methods, the Symbiodinium algae that live within many coral cells must also be considered. Coral juvenile must often take up these important cells from their surrounding water and when adult coral bleach, they lose their endosymbiotic algae and will die if they are not regained. The focus of this paper was to understand some of the cryo-physiology of the endosymbiotic algae, Symbiodinium, living within three species of Hawaiian coral, Fungia scutaria, Porites compressa and Pocillopora damicornis in Kaneohe Bay, Hawaii. Although cryopreservation of algae is common, the successful cryopreservation of these important coral endosymbionts is not common, and these species are often maintained in live serial cultures within stock centers worldwide. Freshly-extracted Symbiodinium were exposed to cryobiologically appropriate physiological stresses and their viability assessed with a Pulse Amplitude Fluorometer. Stresses included sensitivity to chilling temperatures, osmotic stress, and toxic effects of various concentrations and types of cryoprotectants (i.e., dimethyl sulfoxide, propylene glycol, glycerol and methanol). To determine the water and cryoprotectant permeabilities of Symbiodinium, uptake of radio-labeled glycerol and heavy water (D(2)O) were measured. The three different Symbiodinium subtypes studied demonstrated remarkable similarities in their morphology, sensitivity to cryoprotectants and permeability characteristics; however, they differed greatly in their sensitivity to hypo- and hyposmotic challenges and sensitivity to chilling, suggesting that standard slow freezing cryopreservation may not work well for all Symbiodinium. An appendix describes our H(2)O:D(2)O water exchange experiments and compares the diffusionally determined permeability with the two parameter model osmotic permeability.
Keywords
Coral; Symbiodinium; Algae; Zooxanthellae; Symbionts; Water and cryoprotectant permeability; Deuterium; Pulse Amplitude Fluorometer
Tags
IRIS
•
Methanol (Non-Cancer)
Search 2012
WOS
ProQuest
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity