Health & Environmental Research Online (HERO)


Print Feedback Export to File
1332758 
Journal Article 
Fluorinated organic compounds in an eastern Arctic marine food web 
Tomy, GT; Budakowski, W; Halldorson, T; Helm, PA; Stern, GA; Friesen, K; Pepper, K; Tittlemier, SA; Fisk, AT 
2004 
Environmental Science & Technology
ISSN: 0013-936X
EISSN: 1520-5851 
AMER CHEMICAL SOC 
WASHINGTON 
38 
24 
6475-6481 
English 
An eastern Arctic marine food web was analyzed for perfluorooctanesulfonate (PFOS, C8F17SO3-), perfluorooctanoate (PFOA, C7F15COO-), perfluorooctane sulfonamide (PFOSA, C8F17SO2NH2), and N-ethylperfluorooctane sulfonamide (N-EtPFOSA, C8F17SO2NHCH2CH3) to examine the extent of bioaccumulation. PFOS was detected in all species analyzed, and mean concentrations ranged from 0.28 +/- 0.09 ng/g (arithmetic mean +/- 1 standard error, wet wt, whole body) in clams (Mya truncata) to 20.2 +/- 3.9 ng/g (wet wt, liver) in glaucous gulls (Larus hyperboreus). PFOA was detected in approximately 40% of the samples analyzed at concentrations generally smaller than those found for PFOS; the greatest concentrations were observed in zooplankton (2.6 +/- 0.3 ng/g, wet wt). N-EtPFOSA was detected in all species except redfish with mean concentrations ranging from 0.39 +/- 0.07 ng/g (wet wt) in mixed zooplankton to 92.8 +/- 41.9 ng/g (wet wt) in Arctic cod (Boreogadus saida). This is the first report of N-EtPFOSA in Arctic biota. PFOSA was only detected in livers of beluga (Delphinapterus leucas) (20.9 +/- 7.9 ng/g, wet wt) and narwhal (Monodon monoceros) (6.2 +/- 2.3 ng/g, wet wt), suggesting that N-EtPFOSA and other PFOSA-type precursors are likely present but are being biotransformed to PFOSA. A positive linear relationship was found between PFOS concentrations (wet wt) and trophic level (TL), based on delta15N values, (r2 = 0.51, p < 0.0001) resulting in a trophic magnification factor of 3.1. TL-corrected biomagnification factor estimates for PFOS ranged from 0.4 to 9. Both results indicate that PFOS biomagnifies in the Arctic marine food web when liver concentrations of PFOS are used for seabirds and marine mammals. However, transformation of N-EtPFOSA and PFOSA and potential other perfluorinated compounds to PFOS may contribute to PFOS levels in marine mammals and may inflate estimated biomagnification values. None of the other fluorinated compounds (N-EtPFOSA, PFOSA, and PFOA) were found to have a significant relationship with TL, but BMF(TL) values of these compounds were often >1, suggesting potential for these compounds to biomagnify. The presence of perfluorinated compounds in seabirds and mammals provides evidence that trophic transfer is an important exposure route of these chemicals to Arctic biota. 
PFAS
• Additional PFAS (formerly XAgency)
• Expanded PFAS SEM (formerly PFAS 430)
     Litsearch: September 2019
          PubMed
          Web of Science
     Not prioritized for screening
     Perfluorooctane
• ^Per- and Polyfluoroalkyl Substances (PFAS)
     PFOSA (754-91-6)
          Literature Search
               Pubmed
               WOS
• PFAS 150
     Literature Search Update December 2020
          PubMed
          WOS
     Literature Search August 2019
          PubMed
          Web of Science
     Not prioritized for screening
     Perfluorinated compounds
     Perfluorooctane
     Perfluorooctanesulfonamide
     Perfluorooctanesulfonate
     Perfluorooctanesulfonic acid
• PFAS Universe
     Data Source
          Web of Science
          Pubmed
     Perfluorooctane
     Perfluorooctanesulfonamide
     Perfluorooctanesulfonate
     Perfluorooctanesulfonic acid
     Perfluorooctanoate
     Perfluorooctanoic acid
• PFOA and PFOS OW MCLG Approaches
     Cited in White Papers
• PFOSA
     Literature Search
          Pubmed
          WOS
     Screening Results
          Excluded/Not on Topic
• Yale PFAS Liver study