Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1455159
Reference Type
Journal Article
Title
Laboratory investigation on the role of organics in atmospheric nanoparticle growth
Author(s)
Wang, L; Xu, W; Khalizov, AF; Zheng, J; Qiu, C; Zhang, R
Year
2011
Is Peer Reviewed?
1
Journal
Journal of Physical Chemistry A
ISSN:
1089-5639
EISSN:
1520-5215
Volume
115
Issue
32
Page Numbers
8940-8947
Language
English
PMID
21749081
DOI
10.1021/jp1121855
Web of Science Id
WOS:000293758500020
Abstract
The uptake of organic vapors by 4-20 nm H(2)SO(4) particles has been investigated to assess the role of organics in atmospheric nanoparticle growth. Sulfuric acid nanoparticles are generated from homogeneous binary nucleation of H(2)SO(4) and H(2)O vapors in a laminar flow chamber. The growth factor of H(2)SO(4) nanoparticles exposed to methyglyoxal, ethanol, 1-butanol, 1-heptanol, and 1-decanol is measured using a nanotandem differential mobility analyzer (nano-TDMA). The measured growth factor is close to unity when nanoparticles are exposed to methylglyoxal, ethanol, 1-butanol, 1-heptanol, and 1-decanol, indicating no apparent growth within the experimental uncertainty. In addition, spectroscopic evolution of functional groups in H(2)SO(4) particles of ∼40 nm diameter size, deposited on ZnSe crystal and subsequently exposed to glyoxal and 2,4-hexadienal, is studied using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR). The ATR-FT-IR measurements present the first spectroscopic signatures of high molecular weight aldol and oligomer products and show that polymerization and oligomerization reactions are partially reversible. The implications of the present results to nanoparticle growth in the atmosphere are discussed.
Tags
IRIS
•
n-Butanol
Database searches
Pubmed
Source – January 2013 (private)
Pubmed - 1/2013
Merged reference set - 1/2013
Excluded (not pertinent)
Manufacture/Use
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity