Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1467307
Reference Type
Journal Article
Title
Pronounced hydrogen bonding giving rise to apparent probe hyperpolarity in ionic liquid mixtures with 2,2,2-trifluoroethanol
Author(s)
Trivedi, S; Pandey, S; Baker, SN; Baker, GA; Pandey, S
Year
2012
Is Peer Reviewed?
Yes
Journal
Journal of Physical Chemistry B
ISSN:
1520-6106
EISSN:
1520-5207
Volume
116
Issue
4
Page Numbers
1360-1369
Language
English
PMID
22224906
DOI
10.1021/jp210199s
Web of Science Id
WOS:000300461300018
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856541272&doi=10.1021%2fjp210199s&partnerID=40&md5=16230dbc6540ead939954eaee3910373
Exit
Abstract
The fascinating and attractive features of ionic liquids (ILs) can be considerably expanded by mixing with suitable cosolvents, opening their versatility beyond the pure materials. We show here that mixtures of the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) and 2,2,2-trifluoroethanol (TFE) display the intriguing phenomenon of hyperpolarity, examples of which are notably sparse in the literature. From the perspective of the E(T)(N) polarity scale and Kamlet-Taft parameters for hydrogen bond acidity (α) and basicity (β), the polarity of this mixture exceeds that of either neat component. Fluorescent molecular probes capable of engaging in hydrogen bonds (e.g., 2-(p-toluidino)naphthalene-6-sulfonate, TNS; 6-propionyl-2-(dimethylamino)naphthalene, PRODAN) also exhibit this curious behavior. The choice of IL anion appears to be essential as hyperpolarity is not observed for mixtures of TFE with ILs containing anions other than hexafluorophosphate. The complex solute-solvent and solvent-solvent interactions present in the [bmim][PF₆] + TFE mixture were further elucidated using infrared absorbance, dynamic viscometry, and density measurements. These results are discussed in terms of Coulombic interactions, disruption of TFE multimers, formation of hyperanion preference aggregates, and "free" [bmim]⁺. It is our intent that these results open the door for computational exploration of related solvent mixtures while inspiring practical questions, such as whether such systems might offer the potential for stabilization of highly charged transition states or ionic clusters during (nano)synthesis.
Keywords
article; absorbance; acidity; fluorescence; hydrogen bonding; ionic liquids; naphthalene; viscometry
Tags
•
Naphthalene
Previous HERO references
Database Searches
PubMed
Combined data set
Data set for title/abstract screening
Excluded - PECO criteria not met (TIAB)
•
PFAS Universe
Data Source
Web of Science
Pubmed
2,2,2-Trifluoroethanol
Other
•
Naphthalene (2021 Evidence mapping publication)
Previous HERO references
Database Searches
PubMed
Combined data set
Data set for title/abstract screening
Excluded – PECO criteria not met
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity