Health & Environmental Research Online (HERO)


Print Feedback Export to File
1468192 
Journal Article 
Observation of vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier transform ion cyclotron resonance mass spectrometry 
Qian, K; Mennito, AS; Edwards, KE; Ferrughelli, DT 
2008 
Rapid Communications in Mass Spectrometry
ISSN: 0951-4198
EISSN: 1097-0231 
JOHN WILEY & SONS LTD 
CHICHESTER 
22 
14 
2153-2160 
English 
Vanadyl (VO) porphyrins and sulfur-containing vanadyl (VOS) porphyrins of a wide carbon number range (C(26) to C(52)) and Z-number range (-28 to -54) were detected and identified in a petroleum asphaltene by atmospheric pressure photonionization (APPI) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). APPI provides soft ionization of asphaltene molecules (including VO and VOS porphyrins), generating primarily molecular ions (M(+.)). The ultra-high mass resolving power (m/Delta m(FWHM) approximately 500 K) of FTICR-MS enabled resolution and positive identification of elemental formulae for the entire family of VO and VOS porphyrins in a complicated asphaltene matrix. Deocophylerythro-etioporphyrin (DPEP) is found to be the most prevalent structure, followed by etioporphyrins (etio)- and rhodo (benzo)-DPEP. The characteristic Z-distribution of VO porphyrins suggests benzene and naphthene increment in the growth of porphyrin ring structures. Bimodal carbon number distributions of VO porphyrins suggest possible different origins of low and high molecular weight species. To our knowledge, the observation of VOS porphyrins in a petroleum product has not previously been reported. The work is also the first direct identification of the entire vanadyl porphyrin family by ultra-high resolution mass spectrometry without chromatographic separation or demetallation.