Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1468204
Reference Type
Journal Article
Title
Ion association in [bmim][PF6]/naphthalene mixtures: an experimental and computational study
Author(s)
Del Pópolo, MG; Mullan, CL; Holbrey, JD; Hardacre, C; Ballone, P
Year
2008
Is Peer Reviewed?
Yes
Journal
Journal of the American Chemical Society
ISSN:
0002-7863
EISSN:
1520-5126
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
Volume
130
Issue
22
Page Numbers
7032-7041
Language
English
PMID
18461932
DOI
10.1021/ja710841n
Web of Science Id
WOS:000256301200038
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-44449174665&doi=10.1021%2fja710841n&partnerID=40&md5=c4fea99e5685ae2852cde9f85f10b5cf
Exit
Abstract
Mixtures of room temperature ionic liquids (IL) with neutral organic molecules provide a valuable testing ground to investigate the interplay of the ionic and molecular-dipolar state in dense Coulomb systems at near ambient conditions. In the present study, the viscosity eta and the ionic conductivity sigma of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/naphthalene mixtures at T = 80 degrees C have been measured at 10 stoichiometries spanning the composition range from pure naphthalene to pure [bmim][PF6]. The viscosity grows nearly monotonically with increasing IL mole fraction ( x), whereas the conductivity per ion displays a clear peak at x approximately 15%. The origin of this maximum has been investigated using molecular dynamics simulations based on a classical force field. Snapshots of the simulated samples show that the conductivity maximum is due to the gradual transition in the IL component from an ionic state at high x to a dipolar fluid made of neutral ion pairs at low x. At concentrations x < 0.20 the ion pairs condense into molecular-thin filaments bound by dipolar forces and extending in between nanometric droplets of IL. These results are confirmed and complemented by the computation of dynamic and transport properties in [bmim][PF6]/naphthalene mixtures at low IL concentration.
Tags
•
Naphthalene
Previous HERO references
Database Searches
PubMed
Combined data set
Data set for title/abstract screening
Excluded - PECO criteria not met (TIAB)
Other
•
Naphthalene (2021 Evidence mapping publication)
Previous HERO references
Database Searches
PubMed
Combined data set
Data set for title/abstract screening
Excluded – PECO criteria not met
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity