Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1468618
Reference Type
Journal Article
Title
Xenon porometry at room temperature
Author(s)
Telkki, VV; Lounila, J; Jokisaari, J
Year
2006
Is Peer Reviewed?
Yes
Journal
Journal of Chemical Physics
ISSN:
0021-9606
EISSN:
1089-7690
Volume
124
Issue
3
Page Numbers
034711
Language
English
PMID
16438604
DOI
10.1063/1.2161212
Web of Science Id
WOS:000234757400045
URL
http://
://WOS:000234757400045
Exit
Abstract
Xenon porometry is a method in which porous material is immersed in a medium and the properties of the material are studied by means of 129Xe nuclear magnetic resonance (NMR) of xenon gas dissolved in the medium. For instance, the chemical shift of a particular signal (referred to as signal D) arising from xenon inside small pockets formed in the pores during the freezing of the confined medium is highly sensitive to the pore size. In the present study, we show that when naphthalene is used as the medium the pore size distribution of the material can be determined by measuring a single one-dimensional spectrum near room temperature and converting the chemical shift scale of signal D to the pore radius scale by using an experimentally determined correlation. A model has been developed that explains the curious behavior of the chemical shift of signal D as a function of pore radius. The other signals of the spectra measured at different temperatures have also been identified, and the influence of xenon pressure on the spectra has been studied. For comparison, 129Xe NMR spectra of pure xenon gas adsorbed to porous materials have been measured and analyzed.
Tags
IRIS
•
Naphthalene
Previous HERO references
Database Searches
PubMed
Combined data set
Data set for title/abstract screening
Excluded - PECO criteria not met (TIAB)
Other
•
Naphthalene (2021 Evidence mapping publication)
Previous HERO references
Database Searches
PubMed
Combined data set
Data set for title/abstract screening
Excluded – PECO criteria not met
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity