Health & Environmental Research Online (HERO)


Print Feedback Export to File
1488756 
Journal Article 
Multiple pathways of sigma(1) receptor ligand uptakes into primary cultured neuronal cells 
Yamamoto, H; Karasawa, J; Sagi, N; Takahashi, S; Horikomi, K; Okuyama, S; Nukada, T; Sora, I; Yamamoto, T 
2001 
European Journal of Pharmacology
ISSN: 0014-2999
EISSN: 1879-0712 
ELSEVIER SCIENCE BV 
AMSTERDAM 
425 
1-9 
English 
Although many antipsychotics have affinities for a receptors, the transportation pathway of exogenous cr, receptor ligands to intracellular type-1 sigma receptors are not fully understood. In this study, sigma (1) receptor ligand uptakes were studied using primary cultured neuronal cells. [(3)H](+)-pentazocine and [(3)H](R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), used as a selective sigma (1) receptor ligands, were taken up in a time-, energy- and temperature-dependent manner, suggesting that active transport mechanisms were involved in their uptakes. cr, receptor ligands taken up into primary cultured neuronal cells were not restricted to agonists, but also concerned antagonists. The uptakes of these ligands were mainly Na(+)-independent. Kinetic analysis of [(3)H](+)-pentazocine and [(3)H]MS-377 uptake showed K(m) values (muM) of 0.27 and 0.32, and V(max) values (pmol/mg protein/min) of 17.4 and 9.4, respectively. Although both ligands were incorporated, the pharmacological properties of these two ligands were different. Uptake of [(3)H](+)-pentazocine was inhibited in the range 0.4-7.1 muM by all the cr, receptor ligands used, including N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100), a selective a, receptor ligand. In contrast, the inhibition of [(3)H]MS-377 uptake was potently inhibited by haloperidol, characterized by supersensitivity (IC(50), approximately 2 nM) and was inhibited by NE-100 with low sensitivity (IC(50)), 4.5 muM). Moreover, kinetic analysis revealed that NE-100 inhibited [(3)H]MS-377 uptake in a noncompetitive manner, suggesting that NE-100 acted at a site different from the uptake sites of [(3)H]MS-377. These findings suggest that there are at least two uptake pathways for sigma (1) receptor ligands in primary cultured neuronal cells (i.e. a haloperidol-sensitive pathway and another, unclear, pathway). In addition, pretreatment of cells with a calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), a myosin light chain kinase inhibitor, 1-(5-chloronaphthalene-1-sulfonyl)homopiperazine (ML-9), or microsomal Ca(2+)-ATPase inhibitors resulted in a reduction of the amount of or receptor ligand uptake. These findings suggest that the Ca(2+) pump on the endoplasmic reticulum and/or calmodulin-related events might be involved in the regulation of the uptake of sigma receptor ligands into primary neuronal cells. (C) 2001 Elsevier Science BN. All rights reserved. 
haloperidol; MS-377; NE-100; uptake; antipsychotic; sigma(1) receptor 
IRIS
• Naphthalene
     Previous HERO references
     Database Searches
          WOS
     Combined data set
          Data set for title/abstract screening
               Excluded - PECO criteria not met (TIAB)
     May 2024 Update
          SCOPUS
Other
• Naphthalene (2021 Evidence mapping publication)
     Previous HERO references
     Database Searches
          WOS
     Combined data set
          Data set for title/abstract screening
               Excluded – PECO criteria not met