Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2008069
Reference Type
Journal Article
Title
Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria
Author(s)
Yang, Yu; Wang, J; Xiu, Z; Alvarez, PJJ
Year
2013
Is Peer Reviewed?
Yes
Journal
Environmental Toxicology and Chemistry
ISSN:
0730-7268
EISSN:
1552-8618
Volume
32
Issue
7
Page Numbers
1488-1494
Language
English
PMID
23554086
DOI
10.1002/etc.2230
Web of Science Id
WOS:000319874100009
Abstract
The widespread use of silver nanoparticles (AgNPs) raises the potential for environmental releases that could impact microbial ecosystem services. In the present study, the authors address how the AgNPs and Ag(+) that they release may impact nitrogen-cycling bacteria. The authors studied the cellular and transcriptional response of the denitrifier Pseudomonas stutzeri, the nitrogen fixer Azotobacter vinelandii, and the nitrifier Nitrosomonas europaea exposed to 35 nm (carbon-coated) AgNPs or to Ag(+) (added as AgNO3 ). Based on minimum inhibitory concentrations (MICs), Ag(+) was 20 times to 48 times more toxic to the tested strains than AgNPs (including Ag(+) released during exposure). Exposure to sublethal concentrations of AgNPs or Ag(+) (representing 10% of the respective MIC for AgNO3 ) resulted in no significant effect on the expression of the denitrifying genes narG, napB, nirH, and norB in P. stutzeri or the nitrogen-fixing genes nifD, nifH, vnfD, and anfD in A. vinelandii, whereas nitrifying genes (amoA1 and amoC2) in N. europaea were upregulated (2.1- to 3.3-fold). This stimulatory effect disappeared at higher silver concentrations (60% of the Ag(+) MIC), and toxicity was exerted at concentrations higher than 60% of the Ag(+) MIC. The MIC for N. europaea was 8 times to 24 times lower than for the other strains, indicating higher susceptibility to AgNPs. This was corroborated by the lower half-lethal concentration for N. europaea (87 µg/L) compared with P. stutzeri (124 µg/L) and A. vinelandii (>250 µg/L) when cells were exposed with Ag(+) for 24 h in 1 mM bicarbonate buffer. This suggests that ammonia oxidation would be the most vulnerable nitrogen-cycling process in wastewater treatment plants receiving AgNPs and in agricultural soils amended with biosolids that concentrate them.
Keywords
Silver nanoparticle; Nitrogen cycle; Dissolution; Aggregation; Gene expression
Tags
IRIS
•
Ammonia
Literature Search Update – Sept 2015 (private)
Literature Search Results
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity