Health & Environmental Research Online (HERO)


Print Feedback Export to File
2283452 
Journal Article 
Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices 
Li, B; Konecke, S; Wegiel, LA; Taylor, LS; Edgar, KJ 
2013 
Yes 
Carbohydrate Polymers
ISSN: 0144-8617
EISSN: 1879-1344 
98 
1108-1116 
English 
Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. 
IRIS
• n-Butanol
     Database searches
          Pubmed
     Database Searches - March 2014 (private)
          Pubmed - 3/2014
     Excluded (not pertinent)
          Not chemical specific