Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2995990
Reference Type
Journal Article
Title
A monomeric complex of ammonia and cuprous chloride: H3N⋯CuCl isolated and characterised by rotational spectroscopy and ab initio calculations
Author(s)
Bittner, DM; Zaleski, DP; Stephens, SL; Tew, DP; Walker, NR; Legon, AC
Year
2015
Is Peer Reviewed?
Yes
Journal
Journal of Chemical Physics
ISSN:
0021-9606
EISSN:
1089-7690
Volume
142
Issue
14
Page Numbers
144302
Language
English
PMID
25877573
DOI
10.1063/1.4916391
Abstract
The H3N⋯CuCl monomer has been generated and isolated in the gas phase through laser vaporisation of a copper sample in the presence of low concentrations of NH3 and CCl4 in argon. The resulting complex cools to a rotational temperature approaching 2 K during supersonic expansion of the gas sample and is characterised by broadband rotational spectroscopy between 7 and 18.5 GHz. The spectra of six isotopologues are measured and analysed to determine rotational, B0; centrifugal distortion, DJ, DJK; and nuclear quadrupole coupling constants of Cu, Cl, and (14)N nuclei, χaa (X). The geometry of the complex is C3v with the N, Cu, and Cl atoms located on the a inertial axis. Bond distances and the ∠(H -N⋯Cu) bond angle within the complex are precisely evaluated through fitting of geometrical parameters to the experimentally determined moments of inertia and through ab initio calculations at the CCSD(T)(F12*)/AVQZ level. The r(Cu -Cl), r(Cu -N), and ∠(H -N⋯Cu) parameters are, respectively, evaluated to be 2.0614(7) Å, 1.9182(13) Å, and 111.40(6)° in the r0 geometry, in good agreement with the ab initio calculations. Geometrical parameters evaluated for the isolated complex are compared with those established crystallographically for a solid-state sample of [Cu(NH3)Cl].
Tags
IRIS
•
Ammonia
Literature Search Update – Sept 2015 (private)
Literature Search Results
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity