Health & Environmental Research Online (HERO)


Print Feedback Export to File
2997311 
Journal Article 
Potentiality of Immobilized Pig Hepatocyte Spheroids in Bioartificial Liver System 
Lee, JH; Lee, DH; Park, JK; Kim, SK; Kwon, CHD; Lee, SK 
2012 
Transplantation Proceedings
ISSN: 0041-1345
EISSN: 1873-2623 
44 
1012-1014 
English 
Various extracorporeal bioartificial liver (BAL) systems have been developed. To treat fulminant hepatic failure (FHF) patients. Direct cell-cell interaction is one of the major factors influencing the functions of cultured hepatocytes, which increase with progressing of cell aggregation in this study, we investigated the effects of plasma viability and function single and spheroid pig hepatocytes in vitro. Hepatocytes were cultured as spheroids by suspension culture in spinner flasks. We obtained pig plasma from animals in hepatic failure. Immobilized single pig hepatocytes exposed to the toxic pig plasma lost viability and liver function. However, immobilized pig hepatocyte spheroids showed stable ammonia removal functions and urea synthesis and lower lactate dehydrogenase, glutamine oxaloacetate transaminase, and glutamine pyruvate transminase levels during BAL operation. At 5 hours, the ammonia concentration in plasma decreased to 370 and 150 μg/dL by immobilized single and spheroid hepatocytes, respectively, the concentrations at which they were maintained thereafter. The urea concentrations in plasma were 44 versus 72 μg/dL in immobilized single versus spheroid hepatocytes respectively, at 5 hours of operation. Spheroid hepatocytes not only showed in vivo structure, but also maintained high levels of liver-specific functions. The spheroid-based BAL system may be a good candidate to treat FHF patients.