Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2997673
Reference Type
Journal Article
Title
Regiospecific Formation of Cobamide Isomers Is Directed by CobT
Author(s)
Crofts, TS; Hazra, AB; Tran, JLA; Sokoloyskaya, OM; Osadchiy, V; Ad, O; Pelton, J; Bauer, S; Taga, ME
Year
2014
Is Peer Reviewed?
Yes
Journal
Biochemistry
ISSN:
0006-2960
EISSN:
1520-4995
Volume
53
Issue
49
Page Numbers
7805-7815
Language
English
PMID
25412146
DOI
10.1021/bi501147d
Web of Science Id
WOS:000346682800011
Abstract
Cobamides, which include vitamin B₁₂ (cobalamin), are a class of modified tetrapyrroles synthesized exclusively by prokaryotes that function as cofactors for diverse biological processes. Cobamides contain a centrally bound cobalt ion that coordinates to upper and lower axial ligands. The lower ligand is covalently linked to a phosphoribosyl moiety through an alpha-glycosidic bond formed by the CobT enzyme. CobT can catalyze the phosphoribosylation of a variety of substrates. We investigated the ability of CobT to act on either of two nitrogen atoms within a single, asymmetric benzimidazole substrate to form two isomeric riboside phosphate products. Reactions containing asymmetric benzimidazoles as substrates for homologues of CobT from different bacteria resulted in the production of distinct ratios of two isomeric products, with some CobT homologues favoring the production of a single isomer and others forming a mixture of products. These preferences were reflected in the production of cobamide isomers with lower ligands attached in different orientations, some of which are novel cobamides that have not been characterized previously. Two isomers of methoxybenzimidazolylcobamide were found to be unequal in their ability to support ethanolamine ammonia-lyase dependent growth in Salmonella enterica, suggesting that CobT's regiospecificity could be biologically important. We also observed differences in pKa, which can influence the reactivity of the cofactor and could contribute to these distinct biological activities. Relaxed regiospecificity was achieved by introducing a single point mutation in an active site residue of CobT. These new cobamide isomers could be used to probe the mechanisms of cobamide-dependent enzymes.
Tags
IRIS
•
Ammonia
Literature Search Update – Sept 2015 (private)
Literature Search Results
•
Cobalt
LitSearch: January 2008 - August 2018
PubMed
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity