Health & Environmental Research Online (HERO)


Print Feedback Export to File
3860615 
Journal Article 
Nanoscale Boundary Lubrication Studies 
Bhushan, B 
2011 
461-530 
Boundary films are formed by physisorption, chemisorption, and chemical reaction. A good boundary lubricant should have a high degree of interaction between its molecules and the solid surface. As a general rule, liquids are good lubricants when they are polar and thus able to grip solid surfaces (or be adsorbed). In this chapter, we focus on various perfluoropolyethers (PFPEs) and ionic liquid films. We present a summary of nanodeformation, molecular conformation, and lubricant spreading studies, followed by an overview of the nanotribological properties of polar and nonpolar PFPEs and ionic liquid films studied by atomic force microscopy (AFM), and chemical degradation studies using a high-vacuum tribotest apparatus. In this chapter, we focus on PFPE and ionic liquid films. We first present a summary of nanodeformation, molecular conformation, and lubricant spreading studies and an overview of nanotribological and electrical studies of commonly used polar and nonpolar PFPE and ionic liquid films using AFM and chemical degradation studies using a high-vacuum tribotest apparatus. 
PFAS
• Expanded PFAS SEM (formerly PFAS 430)
• ^Per- and Polyfluoroalkyl Substances (PFAS)
     PFPeS (2706-91-4)
          Literature Search
               WOS
• PFPeS
     Literature Search
          WOS
     Screening Results
          Excluded/Not on Topic