Health & Environmental Research Online (HERO)


Print Feedback Export to File
3860654 
Journal Article 
Stereolithography of perfluoropolyethers for the microfabrication of robust omniphobic surfaces 
Credi, C; Levi, M; Turri, S; Simeone, G 
2017 
Yes 
Applied Surface Science
ISSN: 0169-4332 
404 
268-275 
In this work, we provide a simple and straightforward method for the fabrication of stable highly hydrophobic and oleophobic surfaces by applying stereolithography (SL) to perfluoropolyethers (PFPEs). Inspired by the liquid repellency widely shown in nature, our approach enables to easily mimic the interplay between the chemistry and physics by microtexturing low surface tension PFPEs. To this end, UV-curable resins suitable for SL-processing were formulated by blending multifunctional (meth)acrylates PFPEs oligomers with photoinitiator and visible dyes whose content was tuned to tailor resin SL sensitivities. Photocalorimetric studies were also performed to investigate the curing behavior of the different formulations upon SL light exposure. Being the first example of stereolithography applied to PFPEs, stereolithographic processability of new developed PFPEs photopolymer was compared with a standard photoresist taken as benchmark (DL260 (R)). Optimized formulations were characterized by reduced laser penetration depth (<75 mu m) and small critical energies thus enabling for fast printing of micrometric structures. Arrays of cylindrical pillars (85 pm diameter, 400 mu m height) characterized by varied pillars spacing (200 divided by 350 mu m) were rapidly printed with high fidelity as attested by SEM examination. Contact angle measurements in static and dynamic conditions were performed to investigate the surface properties of textured samples using water and oil as the probing liquids. PFPEs liquid repellent performances were compared with those from DL260 (R) textured surfaces arrayed by SL. High water contact angles coupled with low hysteresis asserted that high hydrophobic surfaces were successfully obtained and best-performing textured surfaces were also characterized by high oil repellency. Finally, this study demonstrated that omniphobic surfaces can be easily realized via a single-step, cost-effective, and time-saving process. (C) 2017 Elsevier B.V. All rights reserved. 
3D printing; Stereolithography; UV-curing; Polymer; Perfluoropolyether; Omniphobic 
PFAS
• Expanded PFAS SEM (formerly PFAS 430)
     Perfluoropentanesulfonate
• ^Per- and Polyfluoroalkyl Substances (PFAS)
     PFPeS (2706-91-4)
          Literature Search
               WOS
• PFPeS
     Literature Search
          WOS
     Screening Results
          Excluded/Not on Topic