Health & Environmental Research Online (HERO)


Print Feedback Export to File
4452973 
Journal Article 
Assessing reproductive toxicity of two environmental toxicants with a novel in vitro human spermatogenic model 
Easley, CA; Bradner, JM; Moser, A; Rickman, CA; Mceachin, ZT; Merritt, MM; Hansen, JM; Caudle, WM 
2015 
Stem Cell Research
ISSN: 1873-5061 
14 
347-355 
English 
Environmental influences and insults by reproductive toxicant exposure can lead to impaired spermatogenesis or infertility. Understanding how toxicants disrupt spermatogenesis is critical for determining how environmental factors contribute to impaired fertility. While current animal models are available, understanding of the reproductive toxic effects on human fertility requires a more robust model system. We recently demonstrated that human pluripotent stem cells can differentiate into spermatogonial stem cells/spermatogonia, primary and secondary spermatocytes, and haploid spermatids; a model that mimics many aspects of human spermatogenesis. Here, using this model system, we examine the effects of 2-bromopropane (2-BP) and 1,2,dibromo-3-chloropropane (DBCP) on in vitro human spermatogenesis. 2-BP and DBCP are non-endocrine disrupting toxicants that are known to impact male fertility. We show that acute treatment with either 2-BP or DBCP induces a reduction in germ cell viability through apoptosis. 2-BP and DBCP affect viability of different cell populations as 2-BP primarily reduces spermatocyte viability, whereas DBCP exerts a much greater effect on spermatogonia. Acute treatment with 2-BP or DBCP also reduces the percentage of haploid spermatids. Both 2-BP and DBCP induce reactive oxygen species (ROS) formation leading to an oxidized cellular environment. Taken together, these results suggest that acute exposure with 2-BP or DBCP causes human germ cell death in vitro by inducing ROS formation. This system represents a unique platform for assessing human reproductive toxicity potential of various environmental toxicants in a rapid, efficient, and unbiased format. 
IRIS
• 1,2-Dibromo-3-chloropropane
     Litsearch 2018
          Pubmed
          WOS