Health & Environmental Research Online (HERO)


Print Feedback Export to File
6679083 
Journal Article 
Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population 
Tsai, DH; Riediker, M; Berchet, A; Paccaud, F; Waeber, G; Vollenweider, P; Bochud, M 
2019 
Yes 
Environmental Science and Pollution Research
ISSN: 0944-1344
EISSN: 1614-7499 
26 
19 
19697-19704 
English 
The effect of particulate matter (PM) on health increases with exposure duration but the change from short to longer term is not well studied. We examined the exposure to PM smaller 10 μm (PM10) from short to longer duration and their associations with levels of inflammatory markers in the population-based CoLaus cohort in Lausanne, Switzerland. Baseline and follow-up CoLaus data were used to study the associations between PM10 exposure and inflammatory markers, including the high-sensitivity C-reactive protein (CRP), as well as interleukin 1-beta (IL-1β), interleukin 6 (IL-6), and tumor-necrosis-factor alpha (TNF-α) using mixed models. Exposure was determined for each participant's home address from hourly air quality simulations at a 5-m resolution. Short-term exposure intervals were 1 day, 1 week, and 1 month prior to the hospital visit (blood withdrawal); long-term exposure intervals were 3 and 6 months prior to the visit. In most time windows, IL-6, IL-1β, and TNF-α were positively associated with PM10. No significant associations were identified for CRP. Adjusted associations with long-term exposures were stronger and more significant than those for short-term exposures. In stratified models, gender, age, smoking status, and hypertension only led to small modifications in effect estimates, though a few of the estimates for IL-6 and TNF-α became non-significant. In this general adult cohort exposed to relatively low average PM10 levels, clear associations with markers of systemic inflammation were observed. Longer duration of elevated exposure was associated with an exacerbated inflammatory response. This may partially explain the elevated disease risk observed with chronic PM10 exposure. It also suggests that reducing prolonged episodes of high PM exposure may be a strategy to reduce inflammatory risk. 
NAAQS
• ISA-PM (2019)
     PM RTC
• LitSearch-NOx (2024)
     Forward Citation Search
          Epidemiology
               Results
                    Cardiovascular-ST
                         PubMed
                         WoS
                    Cardiovascular-LT
                         PubMed
                         WoS
          Exposure
               Results
                    Confounding
                         PubMed
                         WoS