Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
999952
Reference Type
Journal Article
Title
Peptide mapping using capillary electrophoresis offline coupled to matrix-assisted laser desorption ionization time of flight mass spectrometry
Author(s)
Bachmann, S; Bakry, R; Huck, CW; Polato, F; Corradini, D; Bonn, GK
Year
2011
Is Peer Reviewed?
Yes
Journal
Electrophoresis
ISSN:
0173-0835
EISSN:
1522-2683
Volume
32
Issue
20
Page Numbers
2830-2839
Language
English
PMID
21953317
DOI
10.1002/elps.201000653
Web of Science Id
WOS:000297424500009
Abstract
This article reports the results of a study carried out to evaluate the offline hyphenation of capillary zone electrophoresis with matrix-assisted lased desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for the analysis of low-abundant complex samples, represented by the tryptic phosphorylated peptides of phosphoproteins, such as α-casein, β-casein, and fetuin. The proposed method employs a latex-coated capillary and consists in the online preconcentration of the tryptic peptides by a pH-mediated stacking method, their separation by capillary zone electrophoresis, and subsequent deposition of the separated analytes onto a MALDI target for their MS analysis. The online preconcentration method allows loading a large sample volume (∼150 nL), which is introduced into the capillary after the hydrodynamic injection of a short plug of 1.0 M ammonium hydroxide solution and is sandwiched between two plugs of the acidic background electrolyte solution (BGE) filling the capillary. The sample spotting of the separated analytes onto the MALDI target is performed either during or postseparation using an automatic spotting device connected to the exit of the separation capillary. The proposed method allows the separation and identification of multiphosphorylated peptides from other peptides and enables their identification at femtomole level with improved efficiency compared with LC approaches hyphenated to MS.
Keywords
CE; MS; Phosphopeptides; Stacking
Tags
IRIS
•
Ammonia
Literature Search – March 2012 (private)
Literature Search Results
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity