Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1454933
Reference Type
Journal Article
Title
Design of donors with broad absorption regions and suitable frontier molecular orbitals to match typical acceptors via substitution on oligo(thienylenevinylene) toward solar cells
Author(s)
Tang, S; Zhang, J
Year
2012
Is Peer Reviewed?
Yes
Journal
Journal of Computational Chemistry
ISSN:
0192-8651
EISSN:
1096-987X
Volume
33
Issue
15
Page Numbers
1353-1363
Language
English
PMID
22488353
DOI
10.1002/jcc.22966
Abstract
A series of oligo(thienylenevinylene) derivatives with or without thieno[3,2-b]thiophene analogs as cores and three types substituent has been investigated at the PBE0/6-31G(d) and the TD-PBE0/6-31+G(d,p) levels to design materials with high performance such as suitable frontier molecular orbital (FMO) energies to match those of [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) and its derivatives, broad absorption spectra, higher and balance transfer property, and better stability. The results reveal that fused cores have slight effects on photophysical properties of investigated derivatives. The electron-withdrawing or push-pull substituents result in red shifts of absorption spectra and better stabilities for investigated derivatives. The calculated reorganization energies of designed derivatives suggest them to be good potential ambipolar transport materials under the proper operating conditions. The promising donors for PCBM, bisPCBM, PC70BM, and indene-C(60) bisadduct (ICBA) as acceptors are recommended theoretically for solar cells based on the proper match for FMOs between donors and acceptors. Moreover, we have also predicted the mobility of designed molecule with better performance.
Tags
IRIS
•
n-Butanol
Database searches
Pubmed
Source – January 2013 (private)
Pubmed - 1/2013
Merged reference set - 1/2013
Excluded (not pertinent)
Not chemical specific
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity