Health & Environmental Research Online (HERO)


Print Feedback Export to File
1456839 
Journal Article 
Feeding lactose to increase ruminal butyrate and the metabolic status of transition dairy cows 
Defrain, JM; Hippen, AR; Kalscheur, KF; Schingoethe, DJ 
2006 
Yes 
Journal of Dairy Science
ISSN: 0022-0302
EISSN: 1525-3198 
89 
267-276 
English 
Twenty-four multiparous Holstein cows (775 +/- 24 kg body weight; 3.4 +/- 0.11 body condition score) were used in a randomized complete block design experiment to determine the impact of increased ruminal butyrate from the fermentation of lactose on metabolism and lactation. Dietary treatments were either a corn-based control diet (CON) or a diet containing lactose at 15.7% of diet dry matter (LAC). Experimental diets were fed from 21 d before expected calving through 21 d in milk (DIM). Blood was sampled at -21, -14, -7, -2, 2, 7, 14, and 21 DIM, rumen fluid at -21, -7, and 7 DIM, and liver tissue via biopsy at 7 and 14 DIM. Pre- and postpartum dry matter intake (DMI) through 28 DIM averaged 12.8 and 17.7 kg/d, respectively, and did not differ between treatments; however, cows fed LAC did not exhibit a prepartum decrease in DMI. Milk yield was unaffected by treatments and averaged 45.7 kg/d during the first 70 DIM. Plasma glucose, insulin, and non-esterified fatty acids were not affected by dietary treatments. Feeding LAC increased the ruminal proportion of butyrate both pre- (11.3 vs. 9.2 +/- 0.45%) and postpartum (13.0 vs. 10.3 +/- 0.67%). Likewise, circulating plasma beta-hydroxybutyrate was increased both pre- (6.1 vs. 4.2 +/- 0.31 mg/dL) and postpartum (14.6 vs. 8.34 +/- 1.7 mg/dL) when feeding LAC compared with CON. Liver lipid content was decreased (8.6. vs. 14.7 +/- 1.5% of wet weight) in cows fed LAC relative to those fed CON, whereas liver glycogen was not affected by dietary treatments. Feeding lactose to transition dairy cows increased the proportion of butyrate in the rumen and beta-hydroxybutyrate in plasma and decreased liver lipid but did not affect lactation performance. 
lactose; butyrate; beta-hydroxybutyrate; transition dairy cow 
IRIS
• n-Butanol
     Database searches
          WOS
     Source – January 2013 (private)
          WOS - 1/2013
          Merged reference set - 1/2013
     Excluded (not pertinent)
          Not chemical specific