Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2185269
Reference Type
Journal Article
Title
Versatile LLRF platform for FLASH laser - art. no. 69370H
Author(s)
Strzalkowski, P; Koprek, W; Pozniak, KT; Romaniuk, RS
Year
2007
Is Peer Reviewed?
Unk
Journal
Proceedings of SPIE
ISSN:
0277-786X
EISSN:
1996-756X
Book Title
PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE)
Volume
6937
Page Numbers
H9370-H9370
Web of Science Id
WOS:000254566700018
Abstract
Research in physics, biology, chemistry, pharmacology, material research and in other branches more and more frequently use free electron lasers as a source of very intense, pulsed and coherent radiation spanning from optical, via UV to X-ray EM beams. The paper presents FLASH laser, which now generates VUV radiation in the range of 10-50mn. The role of low level radio frequency (LLRF) control system is shown in a superconductive linear accelerator. The electron beam from accelerator is injected to the undulator, where it is "converted" to a photon beam. The used LLRF system is based on FPGA circuits integrated directly with a number of analog RF channels. Main part of the work describes an original authors' solution of a universal LLRF control module for superconductive, resonant cavities of FLASH accelerator and laser. A modular construction of the module was debated. The module consists of a digital part residing on the base platform and exchangeable analog part positioned on a number of daughter-boards. The functional structure of the module was presented and in particular the FPGA implementation with configuration and extension block for RF mezzanine boards. The construction and chosen technological details of the backbone PCB were presented. The paper concludes with a number of application examples of the constructed and debugged module in the LLRF system of FLASH accelerator and laser. There are presented exemplary results of quality assessment measurements of the new system board.
Keywords
FLASH laser; FEL; free electron laser; LLRF; control systems; FPGA; superconductive niobium cavities
Tags
IRIS
•
PCBs
Litsearches
Initial Filter
Non Peer-Reviewed
LitSearch August 2015
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity