Naturally occurring hydroxytyrosol derivatives: hydroxytyrosyl acetate and 3,4-dihydroxyphenylglycol modulate inflammatory response in murine peritoneal macrophages. Potential utility as new dietary supplements
Aparicio-Soto, M; Sánchez-Fidalgo, S; González-Benjumea, A; Maya, I; Fernández-Bolaños, JG; Alarcón-De-la-Lastra, C
This work evaluated the effects of extra virgin olive oil (EVOO) phenols, hydroxytyrosyl acetate (2) and 3,4-dihydroxyphenylglycol (3), as well as two new acyl derivatives of 3, 4-(1,2-di(butanoyloxy)ethyl)benzene-1,2-diol (7) and 4-(1,2-di(lauroyloxy)ethyl)benzene-1,2-diol (8), on LPS-stimulated murine peritoneal macrophages in comparison with hydroxytyrosol (HTy, 1). Compounds 2, 3, 7, and 8 showed a strong reactive oxygen species (ROS)-scavenging activity, reducing significantly nitrite levels with a significant decrease on iNOS expression [2 (50 μM, 0.44 ± 0.03; 100 μM, 0.44 ± 0.01; p < 0.01); 3 (50 μM, 0.37 ± 0.03; 100 μM, 0.37 ± 0.01; p < 0.001); 7 (50 μM, 0.45 ± 0.06; p < 0.01)] . However, only 2 and 3 down-regulated COX-2 expression [2 (50 μM, 0.72 ± 0.04, p < 0.05; 100 μM, 0.54 ± 0.06, p < 0.01); 3 (50 μM, 0.56 ± 0.05, p < 0.05; 100 μM, 0.37 ± 0.04; p < 0.001)] and prevented IKBα degradation [2 (100 μM, 1.63 ± 0.14, p < 0.01); 3 (100 μM, 1.82 ± 0.09; p < 0.01)] ; the diacylated compounds 7 and 8 showed worse anti-inflammatory activity than the parent 3. In conclusion, 2 and 3 phenolic derivatives could play an important role in the anti-inflammatory effect of EVOO. The implication of this study for the nutrition and general health of the population rests in the possible use of natural HTy derivatives with better hydrophilic/lipophilic balance, thus improving its pharmacodynamic and pharmacokinetic profiles, as new dietary supplements in foods.