Health & Environmental Research Online (HERO)


Print Feedback Export to File
1416186 
Journal Article 
Studies on the protective role of vitamin C and E against polychlorinated biphenyl (Aroclor 1254)--induced oxidative damage in Leydig cells 
Murugesan, P; Muthusamy, T; Balasubramanian, K; Arunakaran, J 
2005 
Yes 
Free Radical Research
ISSN: 1071-5762
EISSN: 1029-2470 
39 
11 
1259-1272 
English 
Free radical production and lipid peroxidation are potentially important mediators in testicular physiology and toxicology. Polychlorinated biphenyls (PCBs) are global environmental contaminants that cause disruption of the endocrine system in human and animals. The present study was conducted to elucidate the protective role of vitamin C and E against Aroclor 1254-induced changes in Leydig cell steroidogenesis and antioxidant system. Adult male rats were dosed for 30 days with daily intraperitoneal (ip) injection of 2 mg/kg Aroclor or vehicle (corn oil). One group of rats was treated with vitamin C (100 mg/kg bw/day) while the other group was treated with vitamin E (50 mg/kg bw/day) orally, simultaneously with Aroclor 1254 for 30 days. One day after the last treatment, animals were euthanized and blood was collected for the assay of serum hormones such as luteinizing hormone (LH), thyroid stimulating hormone (TSH), prolactin (PRL), triiodothyronine (T(3)), thyroxine (T(4)), testosterone and estradiol. Testes were quickly removed and Leydig cells were isolated in aseptic condition. Purity of Leydig cells was determined by 3beta-hydroxysteroid dehydrogenase (3beta-HSD) staining method. Purified Leydig cells were used for quantification of cell surface LH receptors and steroidogenic enzymes such as cytochrome P(450) side chain cleavage enzyme (P(450)scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase (17beta- HSD). Leydig cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), gamma-glutamyl transpeptidase (gamma-GT), glutathione-S-transferase (GST) and non-enzymatic antioxidants such as vitamin C and E were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also estimated in Leydig cells. Aroclor 1254 treatment significantly reduced the serum LH, TSH, PRL, T(3), T(4), testosterone and estradiol. In addition to this, Leydig cell surface LH receptors, activities of the steroidogenic enzymes such as cytochrome P(450)scc, 3beta-HSD, 17beta-HSD, antioxidant enzymes SOD, CAT, GPX, GR, gamma-GT, GST and non-enzymatic antioxidants such as vitamin C and E were significantly diminished whereas, LPO and ROS were markedly elevated. However, the simultaneous administration of vitamin C and E in Aroclor 1254 exposed rats resulted a significant restoration of all the above-mentioned parameters to the control level. These observations suggest that vitamin C and E have ameliorative role against adverse effects of PCB on Leydig cell steroidogenesis. 
PCBs; Leydig cells; LH receptors; steroidogenic enzymes; reactive oxygen species; antioxidant enzymes 
IRIS
• Formaldehyde [archived]
     Reproductive and Developmental Effects
          Screened
               Title/abstract
                    Not formaldehyde
     Retroactive RIS import
          2015
               FA DevRepro 072115
                    Not FA-Exposure Criteria
                         Not FA-Exposure Criteria
• IRIS Formaldehyde (Inhalation) [Final 2024]
     Literature Indexing
          Other sources and cited references
     Literature Identification
          Reproductive and Developmental Effects
               Excluded
• PCBs
     Hazard ID: Toxicological evidence
     Mechanistic
     Litsearches
          Remaining
          LitSearch August 2015
               Pubmed
               Toxline
               WoS
• PCBs Tox Hazard ID
     Health Effects
          Endocrine
          Reproductive