Health & Environmental Research Online (HERO)


Print Feedback Export to File
1070327 
Journal Article 
Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio 
Hamdi, M; Yoshinaga, M; Packianathan, C; Qin, J; Hallauer, J; McDermott, JR; Yang, H-C; Tsai, K-J; Liu, Z 
2012 
Toxicology and Applied Pharmacology
ISSN: 0041-008X
EISSN: 1096-0333 
262 
185-193 
English 
Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As(III)) produces organic arsenicals, including MMA(III), MMA(V) and DMA(V) with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichiacoli for in vitro functional studies. Our results demonstrated that As3mt methylated As(III) to DMA(V) as an end product and produced MMA(III) and MMA(V) as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As(III) as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans. 
Zebrafish; Arsenic; Arsenite; Selenite; Methylation; SAM; GSH; HPLC-ICP-MS; MMA(III); MMA(V); DMA(V) 
• Arsenic (Inorganic)
     1. Literature
          PubMed
          Toxline, TSCATS, & DART
          Web of Science
          Lit search updates through Oct 2015
     3. Hazard ID Screening
          Other potentially supporting studies
     4. Adverse Outcome Pathways/Networks Screening
          Excluded/Not relevant
               Title/Abstract screening
• Arsenic MOA
     1. MOA Literature Screening
          MOA Cluster
     3. Excluded
          Other not relevant
               Dragon Screened
• Arsenic Susceptibility
     Life Stages Citation Mapping
          Top 5%
• Inorganic Arsenic (7440-38-2) [Final 2025]
     1. Initial Lit Search
          PubMed
          WOS
          ToxNet
          WOS
          Considered New
     2. Lit Search Updates through Oct 2015
          WOS
          Considered
     4. Considered through Oct 2015
     6. Cluster Filter through Oct 2015
     7. Other Studies through Oct 2015
          Ecology