Health & Environmental Research Online (HERO)


Print Feedback Export to File
1936067 
Journal Article 
Arsenic-induced cutaneous hyperplastic lesions are associated with the dysregulation of Yap, a Hippo signaling-related protein 
Li, C; Srivastava, RK; Elmets, CA; Afaq, F; Athar, M 
2013 
Yes 
Biochemical and Biophysical Research Communications
ISSN: 0006-291X
EISSN: 1090-2104 
Elsevier 
438 
607-612 
English 
Arsenic exposure in humans causes a number of toxic manifestations in the skin including cutaneous neoplasm. However, the mechanism of these alterations remains elusive. Here, we provide novel observations that arsenic induced Hippo signaling pathway in the murine skin. This pathway plays crucial roles in determining organ size during the embryonic development and if aberrantly activated in adults, contributes to the pathogenesis of epithelial neoplasm. Arsenic treatment enhanced phosphorylation-dependent activation of LATS1 kinase and other Hippo signaling regulatory proteins Sav1 and MOB1. Phospho-LATS kinase is known to catalyze the inactivation of a transcriptional co-activator, Yap. However, in arsenic-treated epidermis, we did not observed its inactivation. Thus, as expected, unphosphorylated-Yap was translocated to the nucleus in arsenic-treated epidermis. Yap by binding to the transcription factors TEADs induces transcription of its target genes. Consistently, an up-regulation of Yap-dependent target genes Cyr61, Gli2, Ankrd1 and Ctgf was observed in the skin of arsenic-treated mice. Phosphorylated Yap is important in regulating tight and adherens junctions through its binding to αCatenin. We found disruption of these junctions in the arsenic-treated mouse skin despite an increase in αCatenin. These data provide evidence that arsenic-induced canonical Hippo signaling pathway and Yap-mediated disruption of tight and adherens junctions are independently regulated. These effects together may contribute to the carcinogenic effects of arsenic in the skin. 
Arsenic; Hippo signaling pathway; Yap; Carcinogenesis 
• Arsenic Hazard ID
          PubMed
          Considered New
          PubMed
          ToxNet
          Considered New
          WOS
          ToxNet
          Excluded
               Toxnet Duplicates
          ToxNet
          Excluded
               Toxnet Duplicates
          ToxNet
          Excluded
               Toxnet Duplicates
     2. Lit Search Updates through Oct 2015
          PubMed
          WOS
          ToxNet
          Considered
     7. Other Studies through Oct 2015
          MOA
• Arsenic (Inorganic)
     1. Literature
          Lit search updates through Oct 2015
     3. Hazard ID Screening
          Other potentially supporting studies
     4. Adverse Outcome Pathways/Networks Screening
          Relevant
• Arsenic MOA
     4. Adverse Outcome Pathways
          Gene expression changes
     5. Health Effect
          Cancer
     1. MOA Literature Screening
          Health Effect Screening