Health & Environmental Research Online (HERO)


Print Feedback Export to File
2088602 
Journal Article 
Developmental subchronic exposure to diphenylarsinic acid induced increased exploratory behavior, impaired learning behavior, and decreased cerebellar glutathione concentration in rats 
Negishi, T; Matsunaga, Y; Kobayashi, Y; Hirano, S; Tashiro, T 
2013 
Toxicological Sciences
ISSN: 1096-6080
EISSN: 1096-0929 
136 
478-486 
English 
In Japan, people using water from the well contaminated with high-level arsenic developed neurological, mostly cerebellar, symptoms, where diphenylarsinic acid (DPAA) was a major compound. Here, we investigated the adverse effects of developmental exposure to 20mg/l DPAA in drinking water (early period [0-6 weeks of age] and/or late period [7-12]) on behavior and cerebellar development in male rats. In the open field test at 6 weeks of age, early exposure to DPAA significantly increased exploratory behaviors. At 12 weeks of age, late exposure to DPAA similarly increased exploratory behavior independent of the early exposure although a 6-week recovery from DPAA could reverse that change. In the passive avoidance test at 6 weeks of age, early exposure to DPAA significantly decreased the avoidance performance. Even at 12 weeks of age, early exposure to DPAA significantly decreased the test performance, which was independent of the late exposure to DPAA. These results suggest that the DPAA-induced increase in exploratory behavior is transient, whereas the DPAA-induced impairment of passive avoidance is long lasting. At 6 weeks of age, early exposure to DPAA significantly reduced the concentration of cerebellar total glutathione. At 12 weeks of age, late, but not early, exposure to DPAA also significantly reduced the concentration of cerebellar glutathione, which might be a primary cause of oxidative stress. Early exposure to DPAA induced late-onset suppressed expression of NMDAR1 and PSD95 protein at 12 weeks of age, indicating impaired glutamatergic system in the cerebellum of rats developmentally exposed to DPAA. 
diphenylarsinic acid; rat; cerebellum; glutathione 
IRIS
• Arsenic Hazard ID
          PubMed
          Considered New
          PubMed
          Considered New
          WOS
          Considered New
          WOS
          Excluded
               WOS Duplicates
     2. Lit Search Updates through Oct 2015
          PubMed
          WOS
          Considered
     7. Other Studies through Oct 2015
          Other
• Arsenic (Inorganic)
     1. Literature
          Lit search updates through Oct 2015
     3. Hazard ID Screening
          Other potentially supporting studies
     5. Susceptibility Screening
          Excluded/Not relevant
• Arsenic Susceptibility
     1. Susceptibility Literature Screening
          Keyword Search
     2. Excluded
          Not Relevant